Питание

Незаменимые аминокислоты как запомнить. Как выучить биохимию за неделю

Все аминокислоты можно разделить на две категории: заменимые и незаменимые. Название говорит само за себя. Незаменимые (эссенциальные) аминокислоты являются «незаменимым» компонентом рациона питания. Другими словами, наш организм не может синтезировать их самостоятельно. Заменимые аминокислоты – это те, которые в процессе метаболизма могут создаваться из других аминокислот и питательных веществ, поступающих с пищей.

К заменимым аминокислотам относятся:

  • Аспарагин
  • Глютаминовая кислота
  • Глицин
  • Пролин
  • Серин

Эссенциальные аминокислоты не могут синтезироваться организмом, а потому при их отсутствии в пище организм начинает использовать резервные запасы аминокислот, например, альбумины. В худшем случае потребность в аминокислотах восполняется за счет мышечной ткани – процесс, крайне нежелательный для всех бодибилдеров и представителей других видов спорта.

Незаменимые аминокислоты:

  • Гистидин

Незаменимые аминокислоты

Гистидин

Гистидин присутствует во всех тканях человеческого организма. Он играет важную роль в образовании красных и белых клеток крови и принимает участие в обмене информацией между ЦНС и периферическими тканями. Иммунная система нуждается в гистидине для предупреждения аутоиммунных и аллергических реакций, а в желудке при участии этой аминокислоты образуется желудочный сок, необходимый для нормального пищеварения. Дефицит гистидина способствует развитию ревматоидного артрита. Запасы гистидина в нашем организме истощаются достаточно быстро, а потому мы должны регулярно получать его из внешних источников.

Гистидин содержится в мясе, молочных продуктах, зерновых (пшеница, рис, рожь).

Применение: улучшение пищеварения. Источники: молочные продукты, мясо, рыба, рис, пшеница, рожь.

Одна из главных аминокислот бодибилдинга, ведь изолейцин – это одна из трех аминокислот . Изолейцин способствует увеличению физической выносливости и ускоряет восстановление мышечной ткани, стимулирует восстановление после тренировок и поддерживает непрерывное пополнение запасов энергии.

Хорошими источниками изолейцина являются мясные продукты, яйца, рыба, орехи, семена, горох и соя.


Способствует восстановлению мышц. Источники: куриное мясо, орехи кешью, рыба, миндаль, яйца, чечевица, печень и мясо.

Вторая аминокислота из класса ВСАА, которая наряду с изолейцином и валином играет важную роль в процессах восстановления мышечной ткани. Лейцин эффективнее и быстрее других аминокислот превращается в глюкозу, благодаря чему останавливает в мышцах катаболические процессы во время изнурительных тренировочных сессий. Также он участвует в восстановлении мышц после микроповреждения, регулирует уровень сахара в крови, увеличивает секрецию гормона роста и способствует сжиганию жиров.

Источники лейцина: нешлифованный рис, бобы, мясо, орехи, соевая мука и цельная пшеница.


Применение: природный анаболический агент. Источники: все белковые источников, включая коричневый рис, бобовые, орехи и цельная пшеница.

Эта аминокислота известна своими противовирусными свойствами. При участии лизина происходит синтез антител, укрепляющих иммунную систему, необходим лизин и для образования гормонов, регулирующих процессы роста и обновления костной ткани. Благодаря противовирусным свойствам лизин помогает лечить и/или предупреждать простудные заболевания и герпетическую инфекцию. Также эта аминокислота стимулирует продукцию коллагена и мышечного протеина, что приводит к скорейшему восстановлению.

Среди хороших источников лизина следует выделить красное мясо, сыр, яйца, рыбу, молоко, картофель и дрожжи.


Применение: борется с усталостью и перетренированностью. Источники: сыр, яйца, молоко, мясо, дрожжи, картофель и фасоль.

Помогает перерабатывать и утилизировать жиры. Принимает участие в образовании глутатиона, цистеина и , способствующих обезвреживанию и выведению из организма токсических веществ. Метионин нужен для синтеза креатина, вещества, которое повышает выносливость и работоспособность скелетной мускулатуры. Крайне важен для синтеза коллагена, обеспечивающего здоровый вид кожи и ногтей. Людям с аллергией или артритом прием этой аминокислоты может помочь снизить уровень гистамина в организме.

Источники метионина: мясо, яйца, рыба, чеснок, бобы, чечевица, лук, соя, семена и йогурт.


Применение: метаболизм. Источники: мясо, рыба, бобовые, яйца, чеснок, чечевица, лук, йогурт, и семена.

Незаменимая аминокислота, необходимая для нормальной работы центральной нервной системы. Поскольку фенилаланин легко проникает через гематоэнцефалический барьер, он с успехом применяется для лечения неврологических заболеваний. Эта аминокислота также помогает контролировать симптомы депрессии и хронической боли. Исследования показали, что фенилаланин может помочь и при лечении витилиго (белые очаги депигментации на коже). Прием фенилаланина может улучшить память и концентрацию внимания, а также улучшает настроение и эмоциональный фон. Эта аминокислота используется при лечении болезни Паркинсона и шизофрении, однако каждый желающий принимать фенилаланин в качестве пищевой добавки должен предварительно проконсультироваться с врачом. Лицам с артериальной гипертензией и/или мигренью, а также фенилкетонурией, следует избегать этой аминокислоты и продуктов питания, содержащих ее в больших количествах. Высокие дозы фенилаланина могут вызвать повреждение нервной ткани.


Применение: способствует максимальному мышечному сокращению и расслаблению. Источники: молочные продукты, миндаль, авокадо, орехи и семена.

Жизненно важен для образования мышечной ткани, коллагена и эластина, участвует в создании прочной костной ткани и зубов (эмаль). Стимулирует процессы роста и нормализует белковый обмен в организме. Поддерживает практически все системы организма: центральную нервную, сердечно-сосудистую и иммунную. Предупреждает жировую дистрофию печени.

При условии здорового, сбалансированного рациона, дефицит треонина маловероятен, поскольку он присутствует в молочных продуктах, мясе, зерновых, грибах и зеленых овощах.


Применение: нормализует белковый обмен. Источники: мясо, молочные продукты и яйца.

Триптофан

Может превращаться в ниацин. Используется в процессах синтеза метионина и серотонина. Серотонин помогает регулировать артериальное давление и дыхательную функцию. Увеличение количества серотонина в организме ведет к успокоению и улучшению сна.

Одна из аминокислот с разветвленными цепями (ВСАА). Наряду с другими ВСАА способствует нормальному росту и восстановлению тканей. Обеспечивает организм энергией, предупреждая тем самым распад мышечной ткани, регулирует уровень гликемии. Валин необходим для нормальной умственной деятельности, участвует в выведении печенью избытка азотистых соединений, при необходимости может транспортироваться в другие органы и ткани. Валин может помочь при лечении повреждения печени и головного мозга вследствие злоупотребления алкоголем, лекарственными или наркотическими веществами. Принимать эту аминокислоту следует в комбинации с другими ВСАА: лейцином и изолейцином.

Естественные источники валина: мясо, молочные продукты, грибы, арахис, соевый протеин.


Применение: способствует восстановлению и росту мышечной ткани. Источники: молочные продукты, мясо, грибы, соя, арахис.

Заменимые аминокислоты

Аланин

Используется в качестве источника энергии, ускоряя превращение глюкозы в ходе энергетического обмена, а также способствует выведению токсинов из печени. Предотвращает распад мышечной ткани за счет так называемого цикла аланина, который упрощенно можно представить следующим образом: глюкоза – пируват – аланин – пируват – глюкоза. Цикл аланина увеличивает внутриклеточные запасы энергии и тем самым продлевает жизнь клеток. В ходе этого цикла избыток азота удаляется из организма (мочеотделение). Аланин может купировать симптомы, вызванные увеличением предстательной железы.

Источники аланина: мясо, птица, яйца, молочные продукты, рыба и некоторые растительные продукты, например, авокадо.

Одна из важнейших аминокислот в человеческом организме, которая необходима для поддержания здоровья суставов, печени, кожи и мышц. Благодаря восстановительным свойствам может использоваться людьми, страдающими от артрита и других заболеваний суставов. Укрепляет иммунную систему за счет увеличения образования Т-лимфоцитов. Участвует в синтезе креатина и в азотистом обмене, что имеет колоссальное значение для каждого бодибилдера. Также способствует снижению доли жировой ткани в организме и ускоряет заживление поврежденных тканей. Хотя аргинин и образуется в организме, возможность приема аминокислоты с пищевыми добавками следует рассмотреть лицам, страдающим от инфекции или ожогов, а также людям, желающим снизить массу тела, укрепить иммунную систему или набрать мышечную массу.

Естественные источники аргинина: мясо, молочные продукты, пшеница, шоколад, кокос, желатин, овес, арахис, соя и грецкий орех.


Применение: способствует увеличению мышечной массы и уменьшению накопления жира. Источники: цельная пшеница, орехи, семена, рис, шоколад, изюм, и соя.

Аспарагин

Тесно связан с аспарагиновой кислотой, необходим для работы нервной системы, кроме того, наш организм использует эту аминокислоту для синтеза аммиака.

Аспарагин можно найти в продуктах животного и растительного происхождения: говядина, мясо птицы, сыворотка, яйца, рыба, молочные продукты, спаржа, картофель, орехи, семена, цельное зерно.

Аспарагиновая кислота, также известная как L-аспартат

Способствует улучшению обменных процессов и принимает участие в синтезе других аминокислот, в частности, аргинина, лизина и изолейцина. Аспарагиновая кислота имеет большое значение для синтеза клеточной энергии, поскольку принимает участие в образовании аденозинтрифосфата (АТФ) – универсального топлива, которое обеспечивает энергией все внутриклеточные процессы. Поддерживает нервную систему благодаря повышению концентрации никотинамидадениндинуклеотида (NADH), вещества, которое стимулирует продукцию нейромедиаторов и других соединений, необходимых для нормальной работы головного мозга.

Аспарагиновая кислота может синтезироваться в организме, а среди ее источников следует назвать мясо птицы, молочные продукты, говядину и сахарный тростник.

Содержится в бета-кератине – главном структурном белке кожи, ногтей и волос. Лучше всего цистеин усваивается в виде N-ацетил цистеина (NAC). Цистеин может быть эффективен при лечении рака, бронхита, кашля курильщика, кардиологической патологии и септического шока.

Эта аминокислота образуется в организме, однако ее можно также получить из мяса, яиц, брокколи, лука, чеснока и красного перца.


Применение: способствует более быстрому восстановлению и поддержанию хорошей физической формы. Источники: мясо птицы, пшеница, брокколи, яйца, чеснок, лук и перец.

Глютаминовая кислота, также известная как глутамат

Важнейший возбуждающий нейромедиатор головного и спинного мозга. Играет ключевую роль в метаболизме жиров и углеводов, участвует в транспорте калия в спинномозговую жидкость и через гематоэнцефалический барьер. Головной мозг может использовать глютаминовую кислоту в качестве топлива. Может превращаться в глютамин или ГАМК (гамма-аминомасляная кислота).

Помогает создавать и поддерживать мышцы и удалять токсины из печени. Может проникать через гематоэнцефалический барьер и, после превращения в глютаминовую кислоту, выступать в качестве топлива для головного мозга. Также может повышать уровень ГАМК. Глютамин является важнейшим источником энергии для нервной системы. Препараты L-глютамина используются, главным образом, в бодибилдинге, однако на фоне приема глютамина люди также отмечают общий прилив сил и улучшение эмоционального фона. Глютамин образуется путем аминирования (присоединения аминогруппы) глютаминовой кислоты, благодаря чему помогает выводить из печени токсичный аммиак – азот не превращается в аммиак.

Также глютамин помогает транспортировать азот в другие органы и ткани, в особенности в мышцы, где он способствует повышению запасов гликогена. Это имеет большое значение для предупреждения распада мышечной ткани. До 60% аминокислот, содержащихся в мышцах, приходится на глютамин. Также глютамин важен для иммунной системы и может помочь при лечении ревматоидного артрита, хронической усталости и склеродермии.

Глютамин содержится во многих продуктах, однако он быстро разрушается в процессе приготовления. Петрушка и шпинат в сыром виде – отличные источники этой аминокислоты.


Применение: Дополнительный источник энергии во время диеты. Источники: большое количество во всех белковых продуктах.

Глицин

Эта аминокислота помогает строить мышечную ткань, участвует в превращении глюкозы в энергию и повышает уровень креатина, чем способствует набору мышечной массы. Коллаген примерно на 30% состоит из глицина. Фактически, без этой аминокислоты организм не сможет залечивать раны и другие повреждения тканей.

Отличными источниками глицина являются высокобелковые продукты, например, рыба, мясо, молоко, бобы или сыр.

Пролин

Пролин нужен для образования коллагена и хрящевой ткани. Он стимулирует синтез коллагена, что в свою очередь способствует ремоделированию хряща, а потому может оказаться полезным для людей, страдающих от травм и заболеваний суставов. Эта аминокислота ускоряет процессы заживления и успешно применяется в период восстановления после травм, например, после ожогов.

Хорошими источниками пролина являются мясо, молочные продукты и яйца. Вегетарианцам следует рассмотреть возможность приема этой аминокислоты с пищевыми добавками.

Серин

Основная функция серина – поддержание нормального функционирования головного мозга и центральной нервной системы. Белки нервной ткани и ее защитные клетки содержат эту аминокислоту. Также она принимает участие в синтезе серотонина, химического соединения, оказывающего значительное влияние на настроение. Кроме того, серин участвует в метаболизме жиров и жирных кислот и способствует абсорбции креатина.

Мясо, молочные продукты, пшеница (глютен), соя и арахис – примеры хороших источников этой аминокислоты.

Тирозин

Эта аминокислота способствует нормальной работе всего организма. Тирозин помогает контролировать аппетит, а его дефицит чреват снижением артериального давления, замедлением обменных процессов и повышенной утомляемостью. Кроме того, тирозин содействует образованию нейромедиаторов, что имеет большое влияние на взаимодействие человеческого организма с окружающей средой.

Заключение

Аминокислоты имеют огромное значение для работы организма. Пищевые добавки могут быть полезны, но иногда их прием ведет к побочным эффектам, а потому обязательно проконсультируйтесь с квалифицированным специалистом перед началом приема препаратов аминокислот. Это очень важно, поскольку скрытые проблемы со здоровьем могут обостриться на фоне приема аминокислот. Кроме того, часть этих аминокислот образуется в организме, и многие аминокислоты поступают с продуктами питания, а потому важно определить, действительно ли необходим дополнительный приток этих нутриентов. Следует отметить, что аминокислоты продаются без рецепта и в целом считаются безопасными.

Содержимое:

Биохимия соединяет в себе биологию и химию. Эта наука занимается изучением метаболических путей (химических превращений) в живых организмах на клеточном уровне. Помимо того, что биохимия изучает метаболические пути в растениях и микроорганизмах, она является экспериментальной наукой, для занятий которой необходимо соответствующее специальное оборудование. Эта обширная наука базируется на ряде основных понятий и идей, которые изучают в начале курса биохимии.

Шаги

Часть 1 Ознакомьтесь с основами

  1. 1 Запомните структуру аминокислот. Аминокислоты являются строительными кирпичиками, из которых сложены все белки. При изучении биохимии необходимо запомнить структуру и свойства всех 20 аминокислот. Выучите их однобуквенные и трехбуквенные обозначения, чтобы вы могли легко распознавать их в дальнейшем.
    • Изучите пять групп аминокислот, по четыре кислоты в каждой группе.
    • Запомните важные свойства аминокислот, такие как заряд и полярность.
    • Вновь и вновь чертите структуру аминокислот до тех пор, пока она не отложится в вашей памяти.
  2. 2 Ознакомьтесь со структурой белков. Белки состоят из цепочек аминокислот. Для знания основ биохимии необходимо распознавать различные уровни структуры белков и уметь изобразить наиболее важные из них (альфа-спирали и бета-листы). Существует четыре уровня структуры белков:
    • Первичная структура представляет собой линейное расположение аминокислот.
    • Вторичная структура соответствует участкам белка в виде альфа-спиралей и бета-листов.
    • Третичная структура - это трехмерное строение молекулы белка, которое обусловлено взаимодействием аминокислот. Это физиологическая форма белка. Третичная структура многих белков все еще неизвестна.
    • Четвертичная структура возникает в результате взаимодействия нескольких белков, которые образуют более крупную молекулу белка.
  3. 3 Узнайте об уровне pH. Уровень pH раствора характеризует его кислотность. Он указывает на количество присутствующих в растворе ионов водорода и гидроксид-ионов. В кислых растворах содержится больше ионов водорода и сравнительно мало гидроксид-ионов. И наоборот, в щелочных растворах преобладают гидроксид-ионы.
    • Кислоты выполняют роль доноров ионов водорода (H +).
    • Щелочи являются акцепторами ионов водорода (H +).
  4. 4 Научитесь определять pK a раствора. Константа диссоциации кислоты K a показывает, насколько легко кислота отдает ионы водорода в данном растворе. Эта константа определяется как K a = /. Для большинства растворов K a можно найти по таблицам в справочниках или интернете. Величина pK a определяется как отрицательный десятичный логарифм константы K a .
    • Сильные кислоты имеют очень низкие значения pK a .
  5. 5 Научитесь находить pH по pK a с помощью уравнения Гендерсона-Гассельбаха. Это уравнение используют для приготовления буферных растворов в лабораторных условиях. Уравнение Гендерсона-Гассельбаха записывается в следующем виде: pH = pK a + lg [основание]/[кислота]. Величина pK a раствора равна уровню pH данного раствора в том случае, если концентрации кислоты и основания одинаковы.
    • Буферным называется такой раствор, уровень pH которого не меняется при добавлении умеренного количества кислоты или основания. Такие растворы важны для поддержания постоянного уровня pH.
  6. 6 Узнайте об ионных и ковалентных химических связях. Ионная связь между атомами возникает в том случае, если один или несколько электронов переходят от одного атома к другому. В результате образуются положительный и отрицательный ионы, которые притягиваются друг к другу. При ковалентной связи атомы обмениваются электронными парами.
    • Важны и другие виды взаимодействия, такие как водородная связь, при которой возникает притяжение между атомами водорода и молекулами с высокой электроотрицательностью.
    • Тип связи между атомами определяет некоторые свойства молекул.
  7. 7 Узнайте о ферментах. Ферменты представляют собой белки, которые играют важную роль в организме - они катализируют (ускоряют) биохимические реакции. Почти каждая биохимическая реакция в организме ускоряется с помощью определенного фермента, поэтому изучение каталитического действия ферментов является важнейшей задачей биохимии. Каталитические механизмы исследуются главным образом с точки зрения кинетики.
    • Ингибирование ферментов используется в фармакологии для лечения многих видов болезней.

Часть 2 Запомните метаболические пути

  1. 1 Почитайте о метаболических путях и изучите соответствующие диаграммы. Существует множество важных метаболических путей, которые следует запомнить при изучении биохимии. В частности, к таким путям относятся: гликолиз, окислительное фосфорилирование, цикл трикарбоновых кислот (цикл Кребса), дыхательная цепь переноса электронов, фотосинтез.
    • Почитайте описание метаболических путей и изучите их изображения на диаграммах.
    • Не исключено, что на экзамене вас попросят нарисовать полную схему того или иного метаболического пути.
  2. 2 Изучайте один путь за раз. Если вы попытаетесь одновременно выучить все метаболические пути, то запутаетесь и не сможете как следует запомнить ни один из них. Сосредоточьтесь на одном пути и посвятите ему несколько дней, прежде чем перейти к изучению следующего.
    • После того как вы запомните какой-либо путь, постарайтесь не забыть его. Почаще рисуйте этот путь, чтобы освежить память.
  3. 3 Начертите основной путь. Начинайте с изучения основного метаболического пути. Некоторые пути представляют собой повторяющиеся циклы (цикл трикарбоновых кислот), другие имеют вид линейного процесса (гликолиз). Для начала запоминайте форму пути, где он начинается, какие вещества при этом распадаются и какие синтезируются.
    • В начале каждого цикла имеются исходные молекулы, такие как никотинамидадениндинуклеотид, аденозиндифосфат (АДФ) или глюкоза, и конечные продукты, например аденозинтрифосфат или гликоген. В первую очередь запомните исходные вещества и конечные продукты.
  4. 4 Изучите коферменты и метаболиты. Теперь ознакомьтесь с данным путем более подробно. Метаболиты представляют собой промежуточные продукты, которые образуются в ходе процесса, они используются в последующих реакциях. Существуют также коферменты, которые делают реакцию возможной или ускоряют ее.
    • Не заучивайте материал автоматически, без понимания. Обращайте внимание на то, как одни вещества превращаются в другие, чтобы действительно понимать данный процесс, а не просто вызубрить его.
  5. 5 Запишите необходимые ферменты. Конечный этап в изучении метаболического пути заключается в том, чтобы добавить к нему ферменты, необходимые для протекания реакций. Такое поэтапное запоминание пути облегчит вашу задачу. Вы завершите изучение метаболического пути после того, как запомните названия соответствующих ферментов.
    • После этого вы легко сможете записать все белки, метаболиты и молекулы, которые участвуют в данном метаболическом пути.
  6. 6 Регулярно повторяйте изученные пути. Информацию подобного типа следует еженедельно освежать в памяти, иначе вы забудете ее. Каждый день повторяйте какой-то метаболический путь. К концу недели вы повторите все пути и сможете начать заново на следующей неделе.
    • Когда подойдет время контрольной работы или экзамена, вам не придется лихорадочно заучивать метаболические пути, поскольку вы уже будете их знать.

Часть 3 Организация учебы

  1. 1 Читайте учебник. Чтение учебника необходимо при изучении любого предмета. Перед занятиями прочитайте соответствующий материал. Составьте краткий конспект того, что вы прочитали, - это позволит вам лучше подготовиться к занятиям.
    • Читайте вдумчиво. После каждого раздела делайте краткие пометки и записывайте наиболее важные моменты.
    • Попробуйте ответить на некоторые вопросы в конце раздела, чтобы проверить, как вы усвоили материал.
  2. 2 Внимательно изучайте приведенные в учебнике рисунки. Эти рисунки содержат много важной информации и помогают лучше представить то, о чем рассказано в тексте. Часто намного легче понять что-либо, если взглянуть на рисунок, а не только прочитать текст.
    • Переносите важные рисунки в свой конспект, чтобы в дальнейшем вы могли вернуться к ним.
  3. 3 Отмечайте свои записи разными цветами. В биохимии есть множество сложных процессов. Разработайте для своих записей систему цветов. Например, можно отмечать одним цветом сложный материал, а другой цвет использовать для простого и понятного вам материала.
    • Используйте подходящую вам систему. Не переписывайте бездумно конспект своего друга - так вы не добьетесь лучшего понимания материала.
    • Не переусердствуйте. Хотя слишком большое количество разных цветов и придаст вашему конспекту красочный вид, это не облегчит понимание материала.
  4. 4 Задавайте вопросы. При чтении учебника записывайте возникающие у вас вопросы, а затем задавайте их в ходе лекции. Не бойтесь поднимать руку. Если вам что-нибудь не ясно, вполне возможно, что у других студентов также возникли вопросы по этому поводу.
    • Если вы не успели задать какие-то вопросы в ходе лекции, попробуйте поговорить с преподавателем после занятий.
  5. 5 Сделайте карточки. В биохимии есть множество специальных терминов, с которыми вы могли не сталкиваться раньше. Выучите основные термины в начале курса, чтобы затем лучше понимать базирующиеся на них более сложные идеи и концепции.
    • Сделайте карточки с новыми терминами в бумажном или электронном виде. В последнем случае вы сможете записать их на свой мобильный телефон.
    • Когда у вас выдастся свободная минутка, доставайте карточки и просматривайте их.

Наверное, стоит начать с того, что организм человека примерно на четверть (или чуть меньше) состоит из протеинов, то есть, белков. Ребенку они необходимы для роста и развития. Можно сказать, что белки – это каркас, основа нашего тела.

При этом каждый белок выполняет свой, строго определенный объем работы: например, гемоглобин отвечает за обогащение организма малыша кислородом, миозин и актин - за развитие и сокращение мышц, инсулин влияет на обмен веществ, кератин является важной составляющей волос и ногтей, а без коллагена немыслимо образование костей, кожи и сухожилий. Благодаря белковой поддержке иммунная система ребенка противостоит инфекциям, а его психика легко справляется со стрессами.

Они бывают растительными и животными и поступают в организм во время приема пищи. Когда малыш кушает тот или иной продукт, содержащиеся в нем белки попадают в желудочно-кишечный тракт и расщепляются на аминокислоты. А затем из них формируются собственные белки человека – "строительный материал" для развития и постоянного обновления органов и тканей. Аминокислоты несут ответственность и за то, чтобы этот процесс был непрерывным: рост – стабильным, обновление клеток – бесперебойным, развитие мышления – постоянным.

К счастью, мамам не придется выискивать какие-то специальные или редкие продукты, чтобы обеспечить кроху столько необходимыми белками: они присутствуют в большинстве блюд, которыми традиционно кормят маленьких деток. Так, растительные белки малыш получает, в частности, из овощей, фруктов, круп и бобовых, а животные – из мяса, яиц, рыбы и молока. Для его здоровья важны и те, и другие.

Что бы такого скушать?

Известно, что полный набор незаменимых аминокислот присутствует в белках продуктов животного происхождения – яйцах и молоке, а также в белках сои. В то время как в растительной пище аминокислоты распределены несколько неравномерно, как бы "разбросаны" по разным продуктам: одни присутствуют в овощах, другие - в орехах, третьи – в водорослях, четвертые – в кунжуте.

Поэтому нельзя сказать, что подросший малыш, в рационе которого будут присутствовать перечисленные продукты животного происхождения, не сможет без вреда для здоровья перейти на вегетарианский рацион. Тем не менее, поскольку большинство родителей не обладают профессиональными знаниями в данной области, ответственным шагом станет обращение к педиатру, а в идеале - к врачу-диетологу. Только специалисту по силам рассчитать рацион крепыша, включив туда продукты растительного происхождения, способные удовлетворить потребность растущего организма в аминокислотах, в правильных пропорциях, с учетом возраста, состояния здоровья и развития ребенка.

Получив подобную профессиональную консультацию, в дальнейшем мама с папой смогут самостоятельно придерживаться рекомендаций специалиста и добавлять те или иные блюда . Это вполне реально сделать, обладая достаточным количеством информации о каждом требуемом продукте, тем более, что информации во всемирной сети – более чем достаточно. Например, известно, что количество содержащихся в белках орехов незаменимых аминокислот практически приближает их к эталону – так называемому "идеальному белку" куриного яйца. Однако стоит быть готовыми и к поиску нужных для полноценного рациона, но, в то же время, довольно редких для нашей полосы продуктов – например, миндального молока или спирулины.

Рассматривая идею о переводе ребенка на вегетарианский стол, родителям также, стоит принять во внимание информацию о том, что, несмотря на подтвержденную питательную ценность, растительные белки, за исключением соевых, все-таки усваиваются организмом всего на 60 процентов, в то время как животные - на все 90.

Как бы то ни было, основная часть богатых растительным белком продуктов появится в рационе малыша несколько позже (за исключением сои, входящей, в частности, в некоторые детские смеси, и овощей).

Совершенно незаменимые

Если же говорить о крохах до трех лет, то для удовлетворения потребности их организма в аминокислотах, ежедневное меню должно быть составлено таким образом, чтобы ребенок получал с пищей не менее 53 граммов белка, причем, большая часть - 37 граммов - обязательно должна быть животного происхождения, и только 16 граммов – растительного.

Аминокислоты настолько важны для роста и развития детей, что медики, вплоть до миллиграмма, рассчитали необходимый минимум, благодаря которому крепыши смогут вырасти большим и сильным. Оказалось, что наибольшую потребность ребенок до года испытывает в лизине - 150 мг на 1 килограмм массы тела, а наименьшую - в триптофане – 17 мг. Все это в достаточном количестве содержится, например, в мясных блюдах. По словам специалистов, желательно, чтобы у ребенка, которому по возрасту уже разрешено кушать мясо, оно присутствовало в ежедневном рационе.

Восемь или десять? Принято считать, что незаменимых аминокислот – восемь: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин. И это действительно так, если речь идет о сформировавшемся организме взрослого человека. Однако для малышей незаменимыми являются еще аргинин и гистидин. Для того чтобы облегчить запоминание десяти незаменимых аминокислот, студенты-медики используют вот такое забавное мнемоническое правило: "Лиза Метнула Фен в Трибуну, Трезвый Лейтенант Валялся в Изоляторе с Аргентинским Гитаристом".

Однако в наши дни, не имея собственного натурального хозяйства, довольно сложно удостовериться в том, что предназначенный для ребенка продукт – хорошего качества. Поэтому наилучшим и самым безопасным вариантом станут готовые мясные и мясоовощные пюре от ведущих мировых производителей детского питания.

Разрабатываются с учетом рекомендаций педиатров и диетологов, готовятся из натуральных продуктов без добавления соли, крахмала, генномодифицированных компонентов, искусственных ароматизаторов и усилителей вкуса. Безопасность таких продуктов гарантируется и репутацией компании-производителя, и постоянным контролем со стороны многочисленных проверяющих инстанций.

Благодаря своей консистенции и продуманному сочетанию компонентов такие блюда, как, например, "Телятинка по-деревенски" Heinz, легко усвоятся, обогатив рацион ребенка полноценными белками, необходимыми для успешного роста витаминами, микроэлементами и органическими кислотами. Широкий ассортимент предлагаемых производителями мясных пюре позволит сделать питание карапуза максимально разнообразным, периодически знакомить его с новыми интересными вкусами, давая попробовать то нежную индеечку, то крольчатинку, то курочку.

К чему приводит дефицит? Дефицит незаменимых аминокислот может привести к серьезным, а порой даже необратимым последствиям. Когда в организме ребенка начинает развиваться белковая недостаточность, в первую очередь страдают органы и ткани, для которых интенсивное обновление максимально важно, например, кишечник. Не исключено также развитие анемии, снижение массы печени, ослабление иммунитета и, наконец, торможение роста волос и ноготков.

Таким образом, постепенно вводя мясные прикормы в рацион малыша, родители не только обеспечат его самым лучшим питанием, но и с раннего детства привьют крохе привычку к натуральным продуктам и, тем самым, обеспечат ему здоровое будущее.

Биохимия соединяет в себе биологию и химию. Эта наука занимается изучением метаболических путей (химических превращений) в живых организмах на клеточном уровне. Помимо того, что биохимия изучает метаболические пути в растениях и микроорганизмах, она является экспериментальной наукой, для занятий которой необходимо соответствующее специальное оборудование. Эта обширная наука базируется на ряде основных понятий и идей, которые изучают в начале курса биохимии.

Шаги

Часть 1

Ознакомьтесь с основами

    Запомните структуру аминокислот. Аминокислоты являются строительными кирпичиками, из которых сложены все белки. При изучении биохимии необходимо запомнить структуру и свойства всех 20 аминокислот. Выучите их однобуквенные и трехбуквенные обозначения, чтобы вы могли легко распознавать их в дальнейшем.

    • Изучите пять групп аминокислот, по четыре кислоты в каждой группе.
    • Запомните важные свойства аминокислот, такие как заряд и полярность.
    • Вновь и вновь чертите структуру аминокислот до тех пор, пока она не отложится в вашей памяти.
  1. Ознакомьтесь со структурой белков. Белки состоят из цепочек аминокислот. Для знания основ биохимии необходимо распознавать различные уровни структуры белков и уметь изобразить наиболее важные из них (альфа-спирали и бета-листы). Существует четыре уровня структуры белков:

    • Первичная структура представляет собой линейное расположение аминокислот.
    • Вторичная структура соответствует участкам белка в виде альфа-спиралей и бета-листов.
    • Третичная структура - это трехмерное строение молекулы белка, которое обусловлено взаимодействием аминокислот. Это физиологическая форма белка. Третичная структура многих белков все еще неизвестна.
    • Четвертичная структура возникает в результате взаимодействия нескольких белков, которые образуют более крупную молекулу белка.
  2. Узнайте об уровне pH. Уровень pH раствора характеризует его кислотность. Он указывает на количество присутствующих в растворе ионов водорода и гидроксид-ионов. В кислых растворах содержится больше ионов водорода и сравнительно мало гидроксид-ионов. И наоборот, в щелочных растворах преобладают гидроксид-ионы.

    • Кислоты выполняют роль доноров ионов водорода (H +).
    • Щелочи являются акцепторами ионов водорода (H +).
  3. Научитесь определять pK a раствора. Константа диссоциации кислоты K a показывает, насколько легко кислота отдает ионы водорода в данном растворе. Эта константа определяется как K a = /. Для большинства растворов K a можно найти по таблицам в справочниках или интернете. Величина pK a определяется как отрицательный десятичный логарифм константы K a .

    • Сильные кислоты имеют очень низкие значения pK a .
  4. Научитесь находить pH по pK a с помощью уравнения Гендерсона-Гассельбаха. Это уравнение используют для приготовления буферных растворов в лабораторных условиях. Уравнение Гендерсона-Гассельбаха записывается в следующем виде: pH = pK a + lg [основание]/[кислота]. Величина pK a раствора равна уровню pH данного раствора в том случае, если концентрации кислоты и основания одинаковы.

    Узнайте об ионных и ковалентных химических связях. Ионная связь между атомами возникает в том случае, если один или несколько электронов переходят от одного атома к другому. В результате образуются положительный и отрицательный ионы, которые притягиваются друг к другу. При ковалентной связи атомы обмениваются электронными парами.

    Узнайте о ферментах. Ферменты представляют собой белки, которые играют важную роль в организме - они катализируют (ускоряют) биохимические реакции. Почти каждая биохимическая реакция в организме ускоряется с помощью определенного фермента, поэтому изучение каталитического действия ферментов является важнейшей задачей биохимии. Каталитические механизмы исследуются главным образом с точки зрения кинетики.

    • Ингибирование ферментов используется в фармакологии для лечения многих видов болезней.

    Часть 2

    Запомните метаболические пути
    1. Почитайте о метаболических путях и изучите соответствующие диаграммы. Существует множество важных метаболических путей, которые следует запомнить при изучении биохимии. В частности, к таким путям относятся: гликолиз, окислительное фосфорилирование, цикл трикарбоновых кислот (цикл Кребса), дыхательная цепь переноса электронов, фотосинтез.

      • Почитайте описание метаболических путей и изучите их изображения на диаграммах.
      • Не исключено, что на экзамене вас попросят нарисовать полную схему того или иного метаболического пути.
    2. Изучайте один путь за раз. Если вы попытаетесь одновременно выучить все метаболические пути, то запутаетесь и не сможете как следует запомнить ни один из них. Сосредоточьтесь на одном пути и посвятите ему несколько дней, прежде чем перейти к изучению следующего.

      • После того как вы запомните какой-либо путь, постарайтесь не забыть его. Почаще рисуйте этот путь, чтобы освежить память.
    3. Начертите основной путь. Начинайте с изучения основного метаболического пути. Некоторые пути представляют собой повторяющиеся циклы (цикл трикарбоновых кислот), другие имеют вид линейного процесса (гликолиз). Для начала запоминайте форму пути, где он начинается, какие вещества при этом распадаются и какие синтезируются.

      • В начале каждого цикла имеются исходные молекулы, такие как никотинамидадениндинуклеотид, аденозиндифосфат (АДФ) или глюкоза, и конечные продукты, например аденозинтрифосфат или гликоген. В первую очередь запомните исходные вещества и конечные продукты.
    4. Изучите коферменты и метаболиты. Теперь ознакомьтесь с данным путем более подробно. Метаболиты представляют собой промежуточные продукты, которые образуются в ходе процесса, они используются в последующих реакциях. Существуют также коферменты, которые делают реакцию возможной или ускоряют ее.

    5. Запишите необходимые ферменты. Конечный этап в изучении метаболического пути заключается в том, чтобы добавить к нему ферменты, необходимые для протекания реакций. Такое поэтапное запоминание пути облегчит вашу задачу. Вы завершите изучение метаболического пути после того, как запомните названия соответствующих ферментов.

      • После этого вы легко сможете записать все белки, метаболиты и молекулы, которые участвуют в данном метаболическом пути.
    6. Регулярно повторяйте изученные пути. Информацию подобного типа следует еженедельно освежать в памяти, иначе вы забудете ее. Каждый день повторяйте какой-то метаболический путь. К концу недели вы повторите все пути и сможете начать заново на следующей неделе.

      • Когда подойдет время контрольной работы или экзамена, вам не придется лихорадочно заучивать метаболические пути, поскольку вы уже будете их знать.

Каждый учитель заботится о более полном усвоении курса. Лучше всего, конечно, этому помогают образный, эмоциональный рассказ и ясная логика повествования, положительный эмоциональный настрой учеников на уроке, хорошая мотивация к изучению предмета. Хорошо «работают» и опорные схемы. Но в курсе биологии учитель периодически сталкивается с материалом, рассчитанным исключительно на «зубрежу». Логики в таком материале почти нет, образно представить практически невозможно, а знать его необходимо.
В таких случаях я использую простые, самостоятельно разработанные мнемонические приемы, некоторые из которых хочу предложить вниманию коллег.

Типы цветков семейства Сложноцветные

Удобнее, по-моему, давать ученикам все типы цветков этого семейства, включая двугубый. Тогда проще показать происхождение ложноязычкового цветка и сразу указать на большое разнообразие сложноцветных, наличие в семействе древесных форм и т.д. Но названия цветков ребята запоминают плохо. А стоит название напомнить – и они без труда изображают схему цветка, пишут его формулу, рисуют диаграмму. Здесь может помочь такой простой стишок:

(Чтоб мне запомнились эти цветки,)*
Я д ам т ебе в енчика л епестки.

Слова второй строчки начинаются на те же буквы, что и названия типов цветка: я зычковый, д вугубый, т рубчатый, в оронковидный, л ожноязычковый.

Ранги таксонов у растений

Не помню ни одного ученика, даже среди отличников, который бы выучил названия таксонов у растений в правильной последовательности без мнемоники. Стишок в данном случае такой:

Ц ирк, о громный к упол п естрый
С ловно р адугу в ознес (ты).

То есть: ц арство, о тдел, к ласс, п орядок, с емейство, р од, в ид.

Названия 20 аминокислот

Этот материал важен для учеников, особо интересующихся биологией. Если расположить аминокислоты в соответствии с химическими свойствами радикалов, почти так, как это сделано в учебнике: «Биологическая химия для медицинских вузов» (Березов Т.Т., Коровкин Б.Ф., 1990), то их названия запоминаются таким описанием осеннего пейзажа:

Ал ый вал ьс. Ле тит из л ога
Ме дь про щаний, тр ав ф инал.
Гл ина сер ая, тре вога,
Ц еремонность, ти шина.
Асп идные глу би ли стопада
(Падают в) ги гантские ар кады.

То есть: ал анин, вал ин, ле йцин, из ол ейцин, ме тионин, про лин, тр иптофан, ф енилаланин, гл ицин, сер ин, тре онин, ц истеин, ти розин, асп арагин и аспарагиновая кислота, глу тамин и глутаминовая кислота, ли зин, ги стидин, ар гинин.

В этом стишке есть еще указание на количество CH2-групп в лизине и аргинине. В лизине таких групп 4 – слогов в слове «листопада» тоже 4. В аргинине 3 СН2-группы – как и слогов в слове «аркады».

Черепно-мозговые нервы

Знание их может пригодиться и не биологу. В аннотациях к лекарствам мне приходилось видеть лишь номер той или иной пары нервов. «Перевести» такой номер в название сложно, а при выборе лекарства подобная информация важна. Мнемонический прием в данном случае следующий:

О хранять з доровье г раждан,
(Их) б олезненное т ело,
О блегчать л юдскую с тражду –
Я вно б лагостное д ело.

То есть, начиная с первой пары нервов: о бонятельный (I), з рительный (II), г лазодвигательный (III), б локовый (IV), т ройничный (V), о тводящий (VI), л ицевой (VII), с луховой, или стриопаллидарный (VIII), я зыкоглоточный (IX), б луждающий (X), д обавочный (XI). Остается запомнить только подъязычный – XII пара нервов.

Комплементарность азотистых оснований

Мнемонические приемы могут быть и более простыми, но при этом оставаться эффективными. Так, в начале курса молекулярной биологии ученики путаются в комплементарности азотистых оснований. Я предлагаю им простые и заведомо нелепые словосочетания (чем нелепее, тем лучше запоминается). Например: г лупый ц ыпленок – пара Г–Ц или т ревожный а ллигатор – пара А–Т.

Разумеется, мнемонические приемы такого рода не являются панацеей. Некоторым детям (по наблюдениям, 20–30%) трудно запомнить даже такие короткие стишки. Поэтому использование мнемоники должно быть добровольным. Иначе будет только отторжение или курьезы (вместо: «Цирк, огромный купол пестрый...» – я получал: «Цирк сгорел, а клоуны остались»).

Иногда у учеников вызывает отторжение не сам метод, а конкретный прием. Действительно, предложенные выше стихотворения лишены художественности. Можно предложить придумать более совершенное произведение самим ученикам. Обычно это у них не получается, но повторяя попытки, ребята в конце концов запоминают и сам материал.

Вероятно, такими приемами пользуются многие учителя. Хотелось бы познакомиться с их разработками на страницах «Биологии».